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Hidden diversity of soil giant viruses
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Known giant virus diversity is currently skewed towards viruses isolated from aquatic

environments and cultivated in the laboratory. Here, we employ cultivation-independent

metagenomics and mini-metagenomics on soils from the Harvard Forest, leading to the

discovery of 16 novel giant viruses, chiefly recovered by mini-metagenomics. The candidate

viruses greatly expand phylogenetic diversity of known giant viruses and either represented

novel lineages or are affiliated with klosneuviruses, Cafeteria roenbergensis virus or tupan-

viruses. One assembled genome with a size of 2.4Mb represents the largest currently known

viral genome in the Mimiviridae, and others encode up to 80% orphan genes. In addition, we

find more than 240 major capsid proteins encoded on unbinned metagenome fragments,

further indicating that giant viruses are underexplored in soil ecosystems. The fact that most

of these novel viruses evaded detection in bulk metagenomes suggests that mini-

metagenomics could be a valuable approach to unearth viral giants.
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V iruses larger than some cellular organisms and with gen-
omes up to several megabases in size have been discovered
in diverse environments across the globe, primarily from

aquatic systems, such as freshwater, seawater and wastewater1,2,
but also from terrestrial environments3–5 including permafrost6,7.
These viruses are nucleocytoplasmic large DNA viruses
(NCDLV), and they infect a wide range of eukaryotes, in parti-
cular protists and algae8–11. Only a few protist-infecting NCDLV
have been recovered with their native hosts, such as Cafeteria
roenbergensis virus (CroV) in the marine flagellate Cafeteria
roenbergensis12 and the Bodo saltans virus (BsV)13. Many of the
NCDLV are referred to as giant viruses based on their large
physical size and a genome size of at least 300 kb14, although the
term has also been applied to members of the NCLDV with
genomes of at least 200 kb regardless of their particle size15.
Importantly, for many of these NCDLV genome size and particle
diameter do no correlate8.

Most of our current understanding of giant viruses comes from
isolates retrieved in co-cultivation with laboratory strains of
Acanthamoeba1,3. Only recently have the genomes of giant
viruses been recovered by approaches, such as bulk shotgun
metagenomics16–20, flow-cytometric sorting21–23, and after suc-
cessful isolation using a wider range of protist hosts23–25. Recent
large-scale marker gene-based environmental surveys26–28 hinted
at an immense phylogenetic breadth of giant viruses of which,
however, only a small fraction has been isolated to date. Possible
reasons include challenges in providing a suitable host during co-
cultivation and the inability to recover the viruses together with
their native hosts29. In addition, a systematic recovery of giant
virus genomes from metagenomic datasets is lacking and thus,
the genetic diversity of giant viruses remains underexplored.

Here we describe 16 giant virus genomes from a forest soil
ecosystem that were recovered using a cultivation-independent
approach. We shed light on their coding potential and expand the
phylogenetic framework of the NCLDV. Importantly, the novel
genomes represent only the tip of the iceberg as revealed by a
survey of the major capsid protein (MCP) encoded on unbinned
metagenome fragments, which indicates a much higher untapped
diversity of giant virus genetic material in soil.

Results
Mini-metagenomics facilitated the discovery of giant virus
genomes. Soil samples from the Harvard Forest were subjected to
standard shotgun sequencing of microbial communities. Four of
the 28 samples were also analyzed using a ‘mini-metage-
nomics’30–32 approach, where multiple sets of 100 DNA-stained
particles were flow sorted and subjected to whole genome
amplification and sequencing (Fig. 1a). Metagenomic binning of
assembled contigs produced 15 metagenome assembled genomes
(MAGs) from the mini-metagenomes and 1 MAG from the bulk
metagenomes (Supplementary Tables 1–4) that displayed features
typically found in most NCLDV genomes33,34, such as hallmark
genes encoding for MCP(s), factors for maturation of the viral
capsid, and packaging ATPases (Supplementary Table 1, Sup-
plementary Fig. 1). Furthermore, we observed on most contigs a
uniform distribution of genes of viral, bacterial, or eukaryotic
origin and many without matches in public databases (Supple-
mentary Figs. 2, 3). In addition, these new viruses encoded
numerous paralogous genes, a feature common to many
NCLDV35,36 (Supplementary Fig. 2). Many of the duplicated
genes were located on different contigs and often unique to the
respective genomes, providing additional evidence that these
contigs belong to a single viral MAG (Supplementary Fig. 1).
Moreover, presence, absence, and copy number of nucleocyto-
plasmic virus orthologous genes (NCVOGs)34 were comparable

to previously described giant viruses, suggesting that the MAGs
are made up by single viral genomes and several of them being
nearly complete (Supplementary Table 1, Supplementary Figs. 1,
4). An independently conducted benchmarking experiment of the
mini-metagenomics approach revealed that no chimeric contigs
are being created during this workflow which further supports the
quality of the genomes derived here (Supplementary Figs. 5, 6).

Despite the bulk metagenome approach generating five-fold
more reads, it only yielded in a single giant virus genome, whereas
mini-metagenomics lead to the recovery of 15 additional bins
attributable to NCLDV (Fig. 1b). Bulk metagenome reads only
mapped to the MAG recovered from bulk metagenomes (at ~9×
coverage) and not to any mini-metagenome MAGs, suggesting
most of the discovered viruses were of low abundance in the
sampled forest soil (Fig. 1b). This was also reflected in the soil
metatranscriptomes in which no or only low transcriptional
activity of the giant viruses could be detected (Fig. 1b,
Supplementary Table 5).

Sorted viral particles expand known diversity of NCLDV. The
phylogenetic relationships inferred from the tree built from a
concatenated alignment of five core NCVOGs34,37 (Fig. 2a;
Supplementary Fig. 1) and the consensus of single protein phy-
logenies (Supplementary Figs. 7, 8) showed that newly discovered
viruses from forest soil were affiliated with diverse lineages in the
NCLDV. Two of the new viruses, solivirus, and solumvirus, were
in sister-position to the pithoviruses, cedratviruses and the
recently isolated orpheovirus38. Sylvanvirus represented a long
branch on its own. Most novel soil NCLDV were positioned
within the family Mimiviridae, which comprises the proposed
subfamilies Megamimivirinae, the Klosneuvirinae, the algae-
infecting Mesomimivirinae and the genus Cafeteriavirus17,39

(Fig. 2b). One of the new viruses, faunusvirus, grouped with CroV
and represents the second viral genome sampled in this clade
(Fig. 2b). Another novel virus, satyrvirus, branched as sister
lineage to the two recently isolated tupanviruses, which were
derived from deep sea and a soda lake samples9, together forming
a monophyletic clade in the Megamimivirinae (Fig. 2b). Thus,
satyrvirus can be considered as a third member of the proposed
genus Tupanvirus40. Notably, none of the new lineages were
directly affiliated with any of the three other subgroups of well-
studied Megamimivirinae41,42. Eight of the new viruses branched
within the proposed Klosneuvirinae, currently the largest sub-
family in the Mimiviridae based on phylogenetic diversity (PD)43

(Fig. 2c).
Strikingly, the addition of the novel giant viruses to the

NCLDV tree lead to a 21% increase of the total PD in the NCLDV
(Fig. 2c), expanded the diversity of the Mimiviridae by 77% and
nearly tripled the PD of the Klosneuvirinae (Fig. 2c). It is
important to note that this expansion of PD was from a single
study using cultivation-independent techniques, thereby building
upon decades of previous giant virus discovery work1,8,10,41. The
fact that all these newly discovered viruses represent distinct
lineages in the NCLDV hints that additional sampling is expected
to lead to a further substantial increase in giant virus PD.

Genomic features of soil giant viruses. The assembled viral
genomes assigned to the klosneuviruses were among the largest
ever found (Fig. 2b; Supplementary Fig. 1, Supplementary
Table 1). With a genome size of up to 2.4 Mb the hyperionvirus
would become the new record for genome size in the Mimivir-
idae, dwarfing klosneuvirus and tupanvirus with their ~ 1.5 Mb
genomes9,17. Considering that several of the forest soil MAGs are
potentially only partially complete, the true genome size of the
new viruses might be even larger. Similar to recently discovered
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klosneuviruses and tupanviruses9,17, several of the new viruses
affiliated with the Klosneuvirinae encode for expanded sets of
aminoacyl tRNA synthetases (aaRS), e.g. terrestrivirus with up to
19 different aaRS and up to 50 tRNAs with specificity for all 20
different amino acids, a feature only very recently described in the
tupanviruses9. In concert with other viral components of the
eukaryotic translation system, such viruses likely override host
protein biosynthesis using their own enzymes to ensure efficient
production of viral proteins. Being less dependent on the host cell
machinery might allow these viruses to infect multiple hosts, i.e.
fewer proteins are necessary to target and interact with alternative
hosts. A broader host range has been experimentally verified for
tupanviruses9 which were able to infect different protists, how-
ever, viral titer did not increase in all the cases9.

Genome novelty of soil giant viruses. Complementary to the
phylogenetic analysis (Fig. 2a), we inferred a gene sharing net-
work to provide further insights into the relationship of the novel
viral genomes to known NCLDV lineages based on shared gene
content. In agreement with the species tree, viral lineages such as
the Mimiviridae, the Marseilleviridae, the pithoviruses and
cedratviruses, the faustoviruses and the molliviruses and pan-
doraviruses remained well connected (Fig. 3a). Among the novel
viruses with the lowest percentage of genes shared with other

NCLDV were solumvirus and solivirus, with solivirus being only
connected to orpheovirus and Marseilleviridae and solumvirus to
the cedratviruses. In contrast to the phylogenetic tree in which
solivirus and solumvirus were affiliated to each other, there was
no particular linkage between them in the network. This suggests
limited taxon sampling and we expect that with discovery of
additional giant virus genomes, the phylogenetic position of these
viruses will be better resolved.

Another of the soil giant viruses denoted as sylvanvirus featured
a genome completely disconnected from all other NCLDV
(Fig. 3a). With a size of almost 1Mb it represents one of the
largest viral genomes outside pandoraviruses and the Mimiviridae
(Fig. 3a; Supplementary Fig. 1)8,44. With the presence of 10
ancestral NCLDV genes, a number similar to several other
NCLDV, the sylvanvirus genome can be considered near complete
(Supplementary Fig. 1). Intriguingly, the vast majority (~80%) of
its proteins had neither matches in the NCBI non-redundant (nr)
database (Fig. 3b). From the proteins with database hits, 57% had
matches to eukaryotes and 27% to bacteria but only 13% to other
viruses (Fig. 3c). Importantly, there was no trend in taxonomic
affiliation of the hits (Fig. 3c), again emphasizing the lack of any
affiliation to known viruses and organisms. Among the identifiable
genes were 18 potential kinases, five ubiquitin ligases, and a
histone, all potentially playing important roles in interaction with
a currently unknown host.
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Fig. 1 Discovery pipeline for soil giant viruses. a Overall workflow. Fourteen forest soil cores from Barre Woods long-term experimental warming site were
sub-sampled into organic horizon and mineral zone resulting in 28 total samples. Total DNA and RNA were extracted from 28 soil samples for bulk
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True diversity of giant viruses in forest soil. The MCPs in the
bulk metagenomes revealed that the 16 novel viral genomes
represent just a small fraction of giant virus diversity in the soil
samples (Fig. 4a). In total, 245 different MCP genes were detected,
of which 99% were part of the unbinned metagenome fraction.
Most of these MCPs were located on short contigs with a read
coverage of below 2, indicating an extremely low abundance of
corresponding NCLDV in the respective samples (Fig. 4b).
Importantly, none of the bulk-metagenome MCPs matched
MCPs from the mini-metagenome-derived MAGs, further
underlining the much greater diversity of giant viruses in these
samples. MCPs can be heavily duplicated but usually branch
together in lineage-specific clades enabling taxonomic classifica-
tion based on their nearest neighbors in the tree45. Based on

identified phylogenetic relationships it was possible to assign
taxonomy to several of the bulk metagenome MCPs, of which
most could be attributed to the klosneuviruses (Fig. 4a, c). A hint
of the true dimension of the NCLDV diversity is revealed when
considering that the total number of nearly 300 MCPs discovered
in this study, which includes MCPs from all the MAGs, exceeds
the 226 MCPs identified in previously published NCLDV
genomes.

Discussion
Our results illustrate that employing cultivation independent
methods on a minute sample from forest soil, a habitat in which
giant viruses have rarely been found previously3,45, can lead to
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key discoveries. Recovery of solumvirus, solivirus, and sylvan-
virus, three potentially genus, subfamily, or even family level
NCLDV lineages together with 13 other novel giant virus gen-
omes vastly expands the PD of the NCLDV and provides new
insights into their genetic makeup.

The fact that only a single giant virus MAG was recovered in
the bulk metagenomes suggests extremely low abundance of
these viruses compared to bacterial and archaeal community
members in forest soil. However, mini-metagenomics has proven
most effective in recovering these viruses, yet without any
detectable traces of host sequences (Supplementary Tables 6, 7).
It is noteworthy that oftentimes the average read coverage of the
giant virus MAGs was the highest or among the highest com-
pared to non-viral MAGs derived from the same mini-
metagenomes pool of 100 DNA-stained particles (Supplemen-
tary Fig. 9). The high coverage and completeness of giant virus
genomes is consistent with having several copies of the same
viral genome in the same mini-metagenome pool, but the overall
low abundance of giant viruses in the system makes it unlikely
that several identical viral particles were sorted by chance
(Supplementary Figs. 1, 9). A plausible scenario could be that

host vacuoles already filled with giant viruses may have been
recovered during sorting, thereby delivering several clonal copies
of a giant virus genome into a single mini-metagenome pool.
This would enable genome assembly of higher quality and
completeness, as previously shown for polyploid bacterial
symbionts46.

Of the few available studies that have used this mini-
metagenomes method, one describes the discovery of a novel
intracellular bacterium30 and another a new group of giant viru-
ses17, suggesting mini-metagenomics is a compelling method for
elucidating the hidden diversity of intracellular entities such as
giant viruses. As shown by the MCP diversity in the unbinned
metagenome fraction many novel giant viruses are readily await-
ing discovery. Importantly, the mini-metagenomics approach has
not been exhaustively performed in soil or any other ecosystem
and thus represents a promising addition to the toolkit for
exploring the untapped diversity in the giant virus universe.

Methods
Sampling and sample preparation. Fourteen forest soil cores from the Barre
Woods warming experiment located at the Harvard Forest Long-Term Ecological
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Research site (Petersham, MA) were collected and sub-sampled into organic
horizon and mineral zone, resulting in 28 total samples. Mineral zone samples were
flash-frozen while organic horizons were incubated with deuterium oxide for
2 weeks prior to freezing to label the active bacterial and archaeal communities.
This incubation was carried out as part of a different experiment that will be
addressed in a later manuscript. Total DNA and RNA were extracted from 28 soil
samples for bulk metagenomics and metatranscriptomics using the MoBio Pow-
erSoil DNA and RNA kits, respectively. Bacterial and Plant rRNA depletion was
performed on the RNA samples prior to sequencing. Of these 28 soil samples, a
subset of four encompassing two organic and two mineral layers were selected for
mini-metagenomics. Cells, and presumably viral particles and/or eukaryote
vacuoles containing them, were separated from soil particles using a mild deter-
gent, followed by vortexing, centrifugation, and filtration through a 5 μm syringe
filter. The filtrates were stained with SYBR Green nucleic acid stain. For each of the
four samples, 90 pools containing 100 SYBR+ particles were sorted into microwell
plates using fluorescence activated cell sorting (FACS). Sorted pools underwent
lysis and whole genome amplification through multiple displacement amplification
(MDA) following methods outlined previously47. A total of 360 sequencing
libraries were generated with the Nextera XT v2 kit (Illumina) with 9 rounds of
PCR amplification.

Mini-metagenomes. The 360 libraries derived from sorted particles were
sequenced at the DOE Joint Genome Institute (JGI, Walnut Creek, CA) using the
Illumina NextSeq platform. Pools of 90 libraries were processed in four sequencing
runs that generated 2 × 150 bp read lengths. Raw Illumina reads were quality fil-
tered to remove contamination and low-quality reads using BBTools (http://
bbtools.jgi.doe.gov, version 37.38). Read normalization was performed using
BBNorm (http://bbtools.jgi.doe.gov) and error correction with Tadpole (http://
bbtools.jgi.doe.gov). Assembly of filtered, normalized Illumina reads was per-
formed using SPAdes (v3.10.1)48 with the following options:–phred-offset 33 -t 16
-m 115–sc -k 25,55,95. All contig ends were then trimmed of 200 bp and contigs
were discarded if the length was <2 kb or read coverage <2 using BBMap (http://
bbtools.jgi.doe.gov) with the following options: nodisk ambig, filterbycoverage.sh:
mincov.

Bulk metagenomes. Unamplified TruSeq libraries were prepared for the 28 DNA
samples for metagenomic sequencing on the Illumina HiSeq-2000 platform at the
DOE JGI. Raw Illumina reads were trimmed, quality filtered, and corrected using
bfc (version r181)49 with the following options: -1 -s 10g -k 21 -t 10. Following
quality filtering, reads were assembled using SPAdes (v3.11.1)48,50 with the fol-
lowing options:-m 2000–only-assembler -k 33,55,77,99,127–meta -t 32. The entire
filtered read set was mapped to the final assembly and coverage information
generated using bbmap (http://bbtools.jgi.doe.gov, version 37.62) with default
parameters except ambiguous= random. The version of the processing pipeline
was jgi_mga_meta_rqc.py, 2.1.0.

Metatranscriptomes. Libraries were prepared and sequenced on the Illumina
NextSeq platform at the DOE JGI. Following sequencing, metatranscriptome reads
were quality cleaned and a combined assembly was generated using the MEGAHIT
assembler (v1.1.2)51 using the following options: -m 0.2—k-list 23,43,63,83,103,123
—continue -o out.megahit—12. These cleaned reads were aligned to metagenome
reference sequences using BBMap (http://bbtools.jgi.doe.gov, version 37.38) with
the following options: nodisk= true interleaved= true ambiguous= random.

Metagenome binning. Contigs were organized into genome bins based on tetra-
nucleotide sequence composition with MetaBat252. Genome bins were generated
for mini-metagenomes without contig coverage patterns due to MDA bias53.
Coverage was determined for the bulk metagenomes by mapping reads to the
completed assemblies using the Burrows–Wheeler aligner54. Taxonomy of bins was
determined with the genome taxonomy database classifier (https://github.com/
Ecogenomics/GTDBTk).

Screening for giant viruses. Metagenomic bins were screened for presence of the
20 ancestral NCVOGs34 with hmmsearch (version 3.1b2, hmmer.org). Bins with
more than five different hits and/or that contained the NCLDV MCP gene
(NCVOG0022) were selected and further evaluated (see below).

Annotation and quality control of viral genome bins. Gene calling was per-
formed with GeneMarkS using the virus model55. For functional annotation pro-
teins were blasted against previously established NCVOGs34 and the NCBI non-
redundant database (nr) using Diamond blastp56 with an e-value cutoff of 1.0e−5.
In addition, protein domains were identified by hmmsearch (version 3.1b2,
hmmer.org) against Pfam-A (version 29.0)57, and tRNAs and introns were iden-
tified using tRNAscan-SE58 and cmsearch from the Infernal package59 against the
Rfam database (version 13.0)60. Nearly identical sequences within genome bins
(>100 bp, identity >94%) were detected using the MUMmer repeat-match algo-
rithm61 and visualized with Circos62 together with the respective genome bins. For
all MAGs, paralogs and best diamond blastp vs. NCBI nr hits were visualized with

Circos62. Furthermore, distribution of read depth across contigs was evaluated and
regions with low average coverage were identified (Supplementary Table 4).

Experimental benchmarking of the mini-metagenomics approach. Bench-
marking of the mini-metagenomics approach to assess potential chimera formation
during MDA was performed by randomly sorting 10 cells from a bacterial mock
community consisting of five different bacterial isolates; Escherichia coli K12,
Echinicola vietnamensis DSM 17526, Shewanella oneidensis MR-1, Pseudomonas
putida F1, and Meiothermus ruber. In total 59 of these 10-cell sorts were subject to
MDA and sequencing. Resulting reads were filtered, assembled and analyzed with
the same bioinformatics pipeline used for the mini-metagenomes generated in this
study. Assembly statistics of recovered MAGs were generated with MetaQUAST63.

Computational benchmarking of giant virus metagenomic binning. In addition,
benchmarking of the binning workflow was performed to assess its applicability to
giant virus data. First, binning of a simulated mock community consisting of 12
giant viruses was tested, each a representative of a subfamily or family in the
NCLDV. In addition, the herein newly discovered giant viruses were used as
template for a second simulated mock community. In brief, MDA was simulated
on the genomes of the mock communities with MDAsim64 (https://github.com/
hzi-bifo/mdasim/releases/v2.1.1). In the following, Illumina reads were generated
with ART65 and the same bioinformatics pipeline used for the mini-metagenomes
in this study employed for read error-correction, normalization, assembly, and
binning.

Phylogenomics. To remove redundancy, the set of 186 published NCLDV gen-
omes and 16 novel soil giant viruses were clustered at an average nucleotide
identity (ANI) of 95% with at least 100 kb-aligned fraction using fastANI66

resulting in 132 clusters and singletons. None of the newly discovered viruses
clustered with any other virus. The three most incomplete novel giant virus gen-
omes were removed from the data set (Supplementary Table 1, Supplementary
Fig. 2). To infer the positions of novel soil giant viruses in the NCLDV, five core
NCLDV proteins34 were selected: DNA polymerase elongation subunit family B
(NCVOG0038), D5-like helicase-primase (NCVOG0023), packaging ATPase
(NCVOG0249), and DNA or RNA helicases of superfamily II (NCVOG0076) and
Poxvirus Late Transcription Factor VLTF3-like (NCVOG0262), and identified with
hmmsearch (version 3.1b2, hmmer.org). Three of the MAGs derived from mini-
metagenomes were excluded from the analysis as they had less than three con-
served NCLDV proteins (Supplementary Table 1). Protein sequences were aligned
using mafft67. Gapped columns in alignments (<10% sequence information) and
columns with low information content were removed from the alignment with
trimal68. Phylogenetic trees for each protein and for a concatenated alignment of all
five proteins were constructed using IQ-tree with LG+F+R6 as suggested by model
test as best-fit substitution model69. The percentage increase in PD41 was calculated
based on the difference of the sum of branch lengths of phylogenetic species of the
NCLDV trees with and without the metagenomic soil giant viruses.

MCP analysis. Bulk metagenome assemblies and 186 published NCLDV genomes
and 16 soil MAGs were screened for presence of the NCLDV MCP gene
(NCVOG0022)17,34 with hmmsearch (version 3.1b2, hmmer.org) and applying a
cutoff of 1e−6. This cutoff has been evaluated against ~60,000 available bacterial,
archaeal, eukaryotic, and other non-NCLDV genomes in the Integrated Microbial
Genomes database70 yielding in only few false positives. Resulting protein hits were
extracted from the metagenome and to reduce redundancy clustered with cd-hit at
a sequence similarity of 95%71. Cluster representatives were then subject to dia-
mond blastp56 against nr database (June 2018) and proteins which had hits but no
NCLDV MCP in the top 10 were excluded from further analysis as potentially false
positives. For tree construction, MCPs were extracted and aligned with mafft-ginsi
(–unalignlevel 0.8,–allowshift)67. Gapped columns in the alignment (<10%
sequence information) were removed with trimal68 and proteins with <50 aligned
amino acids were removed. A phylogenetic tree was constructed with IQ-tree and
the LG+F+R8 as suggested by model test as the best-fit substitution model69.

Gene sharing network. Protein families were inferred with OrthoFinder 1.0372 on
a representative dataset of 93 NCLDV genomes for comparative analysis (after de-
replication using 95% ANI clustering66, details described above, and removal of 36
poxviruses). For each pair of NCLDV genomes (ANI 95% cluster representatives)
the average percentage of proteins in shared orthogroups in relation to the total
number of proteins in the respective genome was calculated and used as edge
weight in the network.The network was created in Gephi73 using a force layout and
filtered at an edge weight of 18%.

Data availability
The giant virus genomes were deposited at NCBI Genbank
(MK071979–MK072551) and at https://bitbucket.org/berkeleylab/forestsoil-gv,
together with sequence alignments and phylogenetic trees underlying this
study. Metagenomes and corresponding metadata are available at https://img.jgi.
doe.gov/m, accession numbers indicated in Supplementary Table 3.
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